Найти: НОД и НОК этих чисел.
Нахождение НОД 560 и 140
Наибольший общий делитель (НОД) целых чисел 560 и 140 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 560 и 140:
- разложить 560 и 140 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 560 и 140 на простые множители:
560 = 2 · 2 · 2 · 2 · 5 · 7;
560 | 2 |
280 | 2 |
140 | 2 |
70 | 2 |
35 | 5 |
7 | 7 |
1 |
140 = 2 · 2 · 5 · 7;
140 | 2 |
70 | 2 |
35 | 5 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 5, 7
3. Перемножаем эти множители и получаем: 2 · 2 · 5 · 7 = 140
Нахождение НОК 560 и 140
Наименьшее общее кратное (НОК) целых чисел 560 и 140 — это наименьшее натуральное число, которое делится на 560 и на 140 без остатка.
Как найти НОК 560 и 140:
- разложить 560 и 140 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 560 и 140 на простые множители:
560 = 2 · 2 · 2 · 2 · 5 · 7;
560 | 2 |
280 | 2 |
140 | 2 |
70 | 2 |
35 | 5 |
7 | 7 |
1 |
140 = 2 · 2 · 5 · 7;
140 | 2 |
70 | 2 |
35 | 5 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.