Найти НОД и НОК чисел 72 и 100

Дано: два числа 72 и 100.

Найти: НОД и НОК этих чисел.

Нахождение НОД 72 и 100

Наибольший общий делитель (НОД) целых чисел 72 и 100 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 72 и 100:

  1. разложить 72 и 100 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 72 и 100 на простые множители:

100 = 2 · 2 · 5 · 5;

100 2
50 2
25 5
5 5
1

72 = 2 · 2 · 2 · 3 · 3;

72 2
36 2
18 2
9 3
3 3
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (72; 100) = 2 · 2 = 4.

Нахождение НОК 72 и 100

Наименьшее общее кратное (НОК) целых чисел 72 и 100 — это наименьшее натуральное число, которое делится на 72 и на 100 без остатка.

Как найти НОК 72 и 100:

  1. разложить 72 и 100 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 72 и 100 на простые множители:

72 = 2 · 2 · 2 · 3 · 3;

72 2
36 2
18 2
9 3
3 3
1

100 = 2 · 2 · 5 · 5;

100 2
50 2
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (72; 100) = 2 · 2 · 2 · 3 · 3 · 5 · 5 = 1800

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии