Найти: НОД и НОК этих чисел.
Нахождение НОД 702 и 2
Наибольший общий делитель (НОД) целых чисел 702 и 2 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 702 и 2:
- разложить 702 и 2 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 702 и 2 на простые множители:
702 = 2 · 3 · 3 · 3 · 13;
702 | 2 |
351 | 3 |
117 | 3 |
39 | 3 |
13 | 13 |
1 |
2 = 2;
2 | 2 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2
3. Перемножаем эти множители и получаем: 2 = 2
Нахождение НОК 702 и 2
Наименьшее общее кратное (НОК) целых чисел 702 и 2 — это наименьшее натуральное число, которое делится на 702 и на 2 без остатка.
Как найти НОК 702 и 2:
- разложить 702 и 2 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 702 и 2 на простые множители:
702 = 2 · 3 · 3 · 3 · 13;
702 | 2 |
351 | 3 |
117 | 3 |
39 | 3 |
13 | 13 |
1 |
2 = 2;
2 | 2 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.