Найти: НОД и НОК этих чисел.
Нахождение НОД 567 и 224
Наибольший общий делитель (НОД) целых чисел 567 и 224 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 567 и 224:
- разложить 567 и 224 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 567 и 224 на простые множители:
567 = 3 · 3 · 3 · 3 · 7;
567 | 3 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
224 = 2 · 2 · 2 · 2 · 2 · 7;
224 | 2 |
112 | 2 |
56 | 2 |
28 | 2 |
14 | 2 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 7
3. Перемножаем эти множители и получаем: 7 = 7
Нахождение НОК 567 и 224
Наименьшее общее кратное (НОК) целых чисел 567 и 224 — это наименьшее натуральное число, которое делится на 567 и на 224 без остатка.
Как найти НОК 567 и 224:
- разложить 567 и 224 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 567 и 224 на простые множители:
567 = 3 · 3 · 3 · 3 · 7;
567 | 3 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
224 = 2 · 2 · 2 · 2 · 2 · 7;
224 | 2 |
112 | 2 |
56 | 2 |
28 | 2 |
14 | 2 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.