Найти: НОД и НОК этих чисел.
Нахождение НОД 376 и 441
Наибольший общий делитель (НОД) целых чисел 376 и 441 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 376 и 441:
- разложить 376 и 441 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 376 и 441 на простые множители:
441 = 3 · 3 · 7 · 7;
441 | 3 |
147 | 3 |
49 | 7 |
7 | 7 |
1 |
376 = 2 · 2 · 2 · 47;
376 | 2 |
188 | 2 |
94 | 2 |
47 | 47 |
1 |
Частный случай, т.к. 376 и 441 — взаимно простые числа, т.е. числа которые имеют только один общий делитель — единицу.
Нахождение НОК 376 и 441
Наименьшее общее кратное (НОК) целых чисел 376 и 441 — это наименьшее натуральное число, которое делится на 376 и на 441 без остатка.
Как найти НОК 376 и 441:
- разложить 376 и 441 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 376 и 441 на простые множители:
376 = 2 · 2 · 2 · 47;
376 | 2 |
188 | 2 |
94 | 2 |
47 | 47 |
1 |
441 = 3 · 3 · 7 · 7;
441 | 3 |
147 | 3 |
49 | 7 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.