Найти: НОД и НОК этих чисел.
Нахождение НОД 2200 и 1375
Наибольший общий делитель (НОД) целых чисел 2200 и 1375 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 2200 и 1375:
- разложить 2200 и 1375 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 2200 и 1375 на простые множители:
2200 = 2 · 2 · 2 · 5 · 5 · 11;
2200 | 2 |
1100 | 2 |
550 | 2 |
275 | 5 |
55 | 5 |
11 | 11 |
1 |
1375 = 5 · 5 · 5 · 11;
1375 | 5 |
275 | 5 |
55 | 5 |
11 | 11 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5, 5, 11
3. Перемножаем эти множители и получаем: 5 · 5 · 11 = 275
Нахождение НОК 2200 и 1375
Наименьшее общее кратное (НОК) целых чисел 2200 и 1375 — это наименьшее натуральное число, которое делится на 2200 и на 1375 без остатка.
Как найти НОК 2200 и 1375:
- разложить 2200 и 1375 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 2200 и 1375 на простые множители:
2200 = 2 · 2 · 2 · 5 · 5 · 11;
2200 | 2 |
1100 | 2 |
550 | 2 |
275 | 5 |
55 | 5 |
11 | 11 |
1 |
1375 = 5 · 5 · 5 · 11;
1375 | 5 |
275 | 5 |
55 | 5 |
11 | 11 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.