Найти: НОД и НОК этих чисел.
Нахождение НОД 123 и 321
Наибольший общий делитель (НОД) целых чисел 123 и 321 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 123 и 321:
- разложить 123 и 321 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 123 и 321 на простые множители:
321 = 3 · 107;
321 | 3 |
107 | 107 |
1 |
123 = 3 · 41;
123 | 3 |
41 | 41 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3
3. Перемножаем эти множители и получаем: 3 = 3
Нахождение НОК 123 и 321
Наименьшее общее кратное (НОК) целых чисел 123 и 321 — это наименьшее натуральное число, которое делится на 123 и на 321 без остатка.
Как найти НОК 123 и 321:
- разложить 123 и 321 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 123 и 321 на простые множители:
123 = 3 · 41;
123 | 3 |
41 | 41 |
1 |
321 = 3 · 107;
321 | 3 |
107 | 107 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.