Найти: НОД и НОК этих чисел.
Нахождение НОД 1024 и 3456
Наибольший общий делитель (НОД) целых чисел 1024 и 3456 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1024 и 3456:
- разложить 1024 и 3456 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1024 и 3456 на простые множители:
3456 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3;
3456 | 2 |
1728 | 2 |
864 | 2 |
432 | 2 |
216 | 2 |
108 | 2 |
54 | 2 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
1024 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2;
1024 | 2 |
512 | 2 |
256 | 2 |
128 | 2 |
64 | 2 |
32 | 2 |
16 | 2 |
8 | 2 |
4 | 2 |
2 | 2 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2, 2, 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 · 2 · 2 · 2 = 128
Нахождение НОК 1024 и 3456
Наименьшее общее кратное (НОК) целых чисел 1024 и 3456 — это наименьшее натуральное число, которое делится на 1024 и на 3456 без остатка.
Как найти НОК 1024 и 3456:
- разложить 1024 и 3456 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1024 и 3456 на простые множители:
1024 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2;
1024 | 2 |
512 | 2 |
256 | 2 |
128 | 2 |
64 | 2 |
32 | 2 |
16 | 2 |
8 | 2 |
4 | 2 |
2 | 2 |
1 |
3456 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3;
3456 | 2 |
1728 | 2 |
864 | 2 |
432 | 2 |
216 | 2 |
108 | 2 |
54 | 2 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.