Найти: НОД и НОК этих чисел.
Нахождение НОД 9828 и 5544
Наибольший общий делитель (НОД) целых чисел 9828 и 5544 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 9828 и 5544:
- разложить 9828 и 5544 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 9828 и 5544 на простые множители:
9828 = 2 · 2 · 3 · 3 · 3 · 7 · 13;
9828 | 2 |
4914 | 2 |
2457 | 3 |
819 | 3 |
273 | 3 |
91 | 7 |
13 | 13 |
1 |
5544 = 2 · 2 · 2 · 3 · 3 · 7 · 11;
5544 | 2 |
2772 | 2 |
1386 | 2 |
693 | 3 |
231 | 3 |
77 | 7 |
11 | 11 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 3, 3, 7
3. Перемножаем эти множители и получаем: 2 · 2 · 3 · 3 · 7 = 252
Нахождение НОК 9828 и 5544
Наименьшее общее кратное (НОК) целых чисел 9828 и 5544 — это наименьшее натуральное число, которое делится на 9828 и на 5544 без остатка.
Как найти НОК 9828 и 5544:
- разложить 9828 и 5544 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 9828 и 5544 на простые множители:
9828 = 2 · 2 · 3 · 3 · 3 · 7 · 13;
9828 | 2 |
4914 | 2 |
2457 | 3 |
819 | 3 |
273 | 3 |
91 | 7 |
13 | 13 |
1 |
5544 = 2 · 2 · 2 · 3 · 3 · 7 · 11;
5544 | 2 |
2772 | 2 |
1386 | 2 |
693 | 3 |
231 | 3 |
77 | 7 |
11 | 11 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.