Найти НОД и НОК чисел 975 и 1980

Дано: два числа 975 и 1980.

Найти: НОД и НОК этих чисел.

Нахождение НОД 975 и 1980

Наибольший общий делитель (НОД) целых чисел 975 и 1980 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 975 и 1980:

  1. разложить 975 и 1980 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 975 и 1980 на простые множители:

1980 = 2 · 2 · 3 · 3 · 5 · 11;

1980 2
990 2
495 3
165 3
55 5
11 11
1

975 = 3 · 5 · 5 · 13;

975 3
325 5
65 5
13 13
1

2. Выбираем одинаковые множители. В нашем случае это: 3, 5

3. Перемножаем эти множители и получаем: 3 · 5 = 15

Ответ: НОД (975; 1980) = 3 · 5 = 15.

Нахождение НОК 975 и 1980

Наименьшее общее кратное (НОК) целых чисел 975 и 1980 — это наименьшее натуральное число, которое делится на 975 и на 1980 без остатка.

Как найти НОК 975 и 1980:

  1. разложить 975 и 1980 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 975 и 1980 на простые множители:

975 = 3 · 5 · 5 · 13;

975 3
325 5
65 5
13 13
1

1980 = 2 · 2 · 3 · 3 · 5 · 11;

1980 2
990 2
495 3
165 3
55 5
11 11
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (975; 1980) = 2 · 2 · 3 · 3 · 5 · 11 · 5 · 13 = 128700

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии