Найти: НОД и НОК этих чисел.
Нахождение НОД 9702 и 5460
Наибольший общий делитель (НОД) целых чисел 9702 и 5460 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 9702 и 5460:
- разложить 9702 и 5460 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 9702 и 5460 на простые множители:
9702 = 2 · 3 · 3 · 7 · 7 · 11;
9702 | 2 |
4851 | 3 |
1617 | 3 |
539 | 7 |
77 | 7 |
11 | 11 |
1 |
5460 = 2 · 2 · 3 · 5 · 7 · 13;
5460 | 2 |
2730 | 2 |
1365 | 3 |
455 | 5 |
91 | 7 |
13 | 13 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 7
3. Перемножаем эти множители и получаем: 2 · 3 · 7 = 42
Нахождение НОК 9702 и 5460
Наименьшее общее кратное (НОК) целых чисел 9702 и 5460 — это наименьшее натуральное число, которое делится на 9702 и на 5460 без остатка.
Как найти НОК 9702 и 5460:
- разложить 9702 и 5460 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 9702 и 5460 на простые множители:
9702 = 2 · 3 · 3 · 7 · 7 · 11;
9702 | 2 |
4851 | 3 |
1617 | 3 |
539 | 7 |
77 | 7 |
11 | 11 |
1 |
5460 = 2 · 2 · 3 · 5 · 7 · 13;
5460 | 2 |
2730 | 2 |
1365 | 3 |
455 | 5 |
91 | 7 |
13 | 13 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.