Найти: НОД и НОК этих чисел.
Нахождение НОД 9523 и 6230
Наибольший общий делитель (НОД) целых чисел 9523 и 6230 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 9523 и 6230:
- разложить 9523 и 6230 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 9523 и 6230 на простые множители:
9523 = 89 · 107;
9523 | 89 |
107 | 107 |
1 |
6230 = 2 · 5 · 7 · 89;
6230 | 2 |
3115 | 5 |
623 | 7 |
89 | 89 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 89
3. Перемножаем эти множители и получаем: 89 = 89
Нахождение НОК 9523 и 6230
Наименьшее общее кратное (НОК) целых чисел 9523 и 6230 — это наименьшее натуральное число, которое делится на 9523 и на 6230 без остатка.
Как найти НОК 9523 и 6230:
- разложить 9523 и 6230 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 9523 и 6230 на простые множители:
9523 = 89 · 107;
9523 | 89 |
107 | 107 |
1 |
6230 = 2 · 5 · 7 · 89;
6230 | 2 |
3115 | 5 |
623 | 7 |
89 | 89 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.