Найти: НОД и НОК этих чисел.
Нахождение НОД 930 и 1302
Наибольший общий делитель (НОД) целых чисел 930 и 1302 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 930 и 1302:
- разложить 930 и 1302 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 930 и 1302 на простые множители:
1302 = 2 · 3 · 7 · 31;
1302 | 2 |
651 | 3 |
217 | 7 |
31 | 31 |
1 |
930 = 2 · 3 · 5 · 31;
930 | 2 |
465 | 3 |
155 | 5 |
31 | 31 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 31
3. Перемножаем эти множители и получаем: 2 · 3 · 31 = 186
Нахождение НОК 930 и 1302
Наименьшее общее кратное (НОК) целых чисел 930 и 1302 — это наименьшее натуральное число, которое делится на 930 и на 1302 без остатка.
Как найти НОК 930 и 1302:
- разложить 930 и 1302 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 930 и 1302 на простые множители:
930 = 2 · 3 · 5 · 31;
930 | 2 |
465 | 3 |
155 | 5 |
31 | 31 |
1 |
1302 = 2 · 3 · 7 · 31;
1302 | 2 |
651 | 3 |
217 | 7 |
31 | 31 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.