Найти НОД и НОК чисел 920 и 300

Дано: два числа 920 и 300.

Найти: НОД и НОК этих чисел.

Нахождение НОД 920 и 300

Наибольший общий делитель (НОД) целых чисел 920 и 300 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 920 и 300:

  1. разложить 920 и 300 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 920 и 300 на простые множители:

920 = 2 · 2 · 2 · 5 · 23;

920 2
460 2
230 2
115 5
23 23
1

300 = 2 · 2 · 3 · 5 · 5;

300 2
150 2
75 3
25 5
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 5 = 20

Ответ: НОД (920; 300) = 2 · 2 · 5 = 20.

Нахождение НОК 920 и 300

Наименьшее общее кратное (НОК) целых чисел 920 и 300 — это наименьшее натуральное число, которое делится на 920 и на 300 без остатка.

Как найти НОК 920 и 300:

  1. разложить 920 и 300 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 920 и 300 на простые множители:

920 = 2 · 2 · 2 · 5 · 23;

920 2
460 2
230 2
115 5
23 23
1

300 = 2 · 2 · 3 · 5 · 5;

300 2
150 2
75 3
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (920; 300) = 2 · 2 · 2 · 5 · 23 · 5 · 3 = 13800

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии