Найти НОД и НОК чисел 90 и 215

Дано: два числа 90 и 215.

Найти: НОД и НОК этих чисел.

Нахождение НОД 90 и 215

Наибольший общий делитель (НОД) целых чисел 90 и 215 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 90 и 215:

  1. разложить 90 и 215 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 90 и 215 на простые множители:

215 = 5 · 43;

215 5
43 43
1

90 = 2 · 3 · 3 · 5;

90 2
45 3
15 3
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 5

3. Перемножаем эти множители и получаем: 5 = 5

Ответ: НОД (90; 215) = 5 = 5.

Нахождение НОК 90 и 215

Наименьшее общее кратное (НОК) целых чисел 90 и 215 — это наименьшее натуральное число, которое делится на 90 и на 215 без остатка.

Как найти НОК 90 и 215:

  1. разложить 90 и 215 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 90 и 215 на простые множители:

90 = 2 · 3 · 3 · 5;

90 2
45 3
15 3
5 5
1

215 = 5 · 43;

215 5
43 43
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (90; 215) = 2 · 3 · 3 · 5 · 43 = 3870

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии