Найти НОД и НОК чисел 875 и 125

Дано: два числа 875 и 125.

Найти: НОД и НОК этих чисел.

Нахождение НОД 875 и 125

Наибольший общий делитель (НОД) целых чисел 875 и 125 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 875 и 125:

  1. разложить 875 и 125 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 875 и 125 на простые множители:

875 = 5 · 5 · 5 · 7;

875 5
175 5
35 5
7 7
1

125 = 5 · 5 · 5;

125 5
25 5
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 5, 5, 5

3. Перемножаем эти множители и получаем: 5 · 5 · 5 = 125

Ответ: НОД (875; 125) = 5 · 5 · 5 = 125.

Нахождение НОК 875 и 125

Наименьшее общее кратное (НОК) целых чисел 875 и 125 — это наименьшее натуральное число, которое делится на 875 и на 125 без остатка.

Как найти НОК 875 и 125:

  1. разложить 875 и 125 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 875 и 125 на простые множители:

875 = 5 · 5 · 5 · 7;

875 5
175 5
35 5
7 7
1

125 = 5 · 5 · 5;

125 5
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (875; 125) = 5 · 5 · 5 · 7 = 875

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии