Найти: НОД и НОК этих чисел.
Нахождение НОД 8225 и 8400
Наибольший общий делитель (НОД) целых чисел 8225 и 8400 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 8225 и 8400:
- разложить 8225 и 8400 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 8225 и 8400 на простые множители:
8400 = 2 · 2 · 2 · 2 · 3 · 5 · 5 · 7;
8400 | 2 |
4200 | 2 |
2100 | 2 |
1050 | 2 |
525 | 3 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
8225 = 5 · 5 · 7 · 47;
8225 | 5 |
1645 | 5 |
329 | 7 |
47 | 47 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5, 5, 7
3. Перемножаем эти множители и получаем: 5 · 5 · 7 = 175
Нахождение НОК 8225 и 8400
Наименьшее общее кратное (НОК) целых чисел 8225 и 8400 — это наименьшее натуральное число, которое делится на 8225 и на 8400 без остатка.
Как найти НОК 8225 и 8400:
- разложить 8225 и 8400 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 8225 и 8400 на простые множители:
8225 = 5 · 5 · 7 · 47;
8225 | 5 |
1645 | 5 |
329 | 7 |
47 | 47 |
1 |
8400 = 2 · 2 · 2 · 2 · 3 · 5 · 5 · 7;
8400 | 2 |
4200 | 2 |
2100 | 2 |
1050 | 2 |
525 | 3 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.