Найти: НОД и НОК этих чисел.
Нахождение НОД 82 и 884
Наибольший общий делитель (НОД) целых чисел 82 и 884 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 82 и 884:
- разложить 82 и 884 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 82 и 884 на простые множители:
884 = 2 · 2 · 13 · 17;
884 | 2 |
442 | 2 |
221 | 13 |
17 | 17 |
1 |
82 = 2 · 41;
82 | 2 |
41 | 41 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2
3. Перемножаем эти множители и получаем: 2 = 2
Нахождение НОК 82 и 884
Наименьшее общее кратное (НОК) целых чисел 82 и 884 — это наименьшее натуральное число, которое делится на 82 и на 884 без остатка.
Как найти НОК 82 и 884:
- разложить 82 и 884 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 82 и 884 на простые множители:
82 = 2 · 41;
82 | 2 |
41 | 41 |
1 |
884 = 2 · 2 · 13 · 17;
884 | 2 |
442 | 2 |
221 | 13 |
17 | 17 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.