Найти НОД и НОК чисел 82 и 884

Дано: два числа 82 и 884.

Найти: НОД и НОК этих чисел.

Нахождение НОД 82 и 884

Наибольший общий делитель (НОД) целых чисел 82 и 884 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 82 и 884:

  1. разложить 82 и 884 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 82 и 884 на простые множители:

884 = 2 · 2 · 13 · 17;

884 2
442 2
221 13
17 17
1

82 = 2 · 41;

82 2
41 41
1

2. Выбираем одинаковые множители. В нашем случае это: 2

3. Перемножаем эти множители и получаем: 2 = 2

Ответ: НОД (82; 884) = 2 = 2.

Нахождение НОК 82 и 884

Наименьшее общее кратное (НОК) целых чисел 82 и 884 — это наименьшее натуральное число, которое делится на 82 и на 884 без остатка.

Как найти НОК 82 и 884:

  1. разложить 82 и 884 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 82 и 884 на простые множители:

82 = 2 · 41;

82 2
41 41
1

884 = 2 · 2 · 13 · 17;

884 2
442 2
221 13
17 17
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (82; 884) = 2 · 2 · 13 · 17 · 41 = 36244

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии