Найти: НОД и НОК этих чисел.
Нахождение НОД 8 и 62663
Наибольший общий делитель (НОД) целых чисел 8 и 62663 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 8 и 62663:
- разложить 8 и 62663 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 8 и 62663 на простые множители:
62663 = 223 · 281;
62663 | 223 |
281 | 281 |
1 |
8 = 2 · 2 · 2;
8 | 2 |
4 | 2 |
2 | 2 |
1 |
Частный случай, т.к. 8 и 62663 — взаимно простые числа
Нахождение НОК 8 и 62663
Наименьшее общее кратное (НОК) целых чисел 8 и 62663 — это наименьшее натуральное число, которое делится на 8 и на 62663 без остатка.
Как найти НОК 8 и 62663:
- разложить 8 и 62663 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 8 и 62663 на простые множители:
8 = 2 · 2 · 2;
8 | 2 |
4 | 2 |
2 | 2 |
1 |
62663 = 223 · 281;
62663 | 223 |
281 | 281 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.