Найти: НОД и НОК этих чисел.
Нахождение НОД 798 и 1188
Наибольший общий делитель (НОД) целых чисел 798 и 1188 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 798 и 1188:
- разложить 798 и 1188 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 798 и 1188 на простые множители:
1188 = 2 · 2 · 3 · 3 · 3 · 11;
1188 | 2 |
594 | 2 |
297 | 3 |
99 | 3 |
33 | 3 |
11 | 11 |
1 |
798 = 2 · 3 · 7 · 19;
798 | 2 |
399 | 3 |
133 | 7 |
19 | 19 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 3
3. Перемножаем эти множители и получаем: 2 · 3 = 6
Нахождение НОК 798 и 1188
Наименьшее общее кратное (НОК) целых чисел 798 и 1188 — это наименьшее натуральное число, которое делится на 798 и на 1188 без остатка.
Как найти НОК 798 и 1188:
- разложить 798 и 1188 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 798 и 1188 на простые множители:
798 = 2 · 3 · 7 · 19;
798 | 2 |
399 | 3 |
133 | 7 |
19 | 19 |
1 |
1188 = 2 · 2 · 3 · 3 · 3 · 11;
1188 | 2 |
594 | 2 |
297 | 3 |
99 | 3 |
33 | 3 |
11 | 11 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.