Найти: НОД и НОК этих чисел.
Нахождение НОД 7920 и 594
Наибольший общий делитель (НОД) целых чисел 7920 и 594 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 7920 и 594:
- разложить 7920 и 594 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 7920 и 594 на простые множители:
7920 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 11;
7920 | 2 |
3960 | 2 |
1980 | 2 |
990 | 2 |
495 | 3 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
594 = 2 · 3 · 3 · 3 · 11;
594 | 2 |
297 | 3 |
99 | 3 |
33 | 3 |
11 | 11 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 3, 11
3. Перемножаем эти множители и получаем: 2 · 3 · 3 · 11 = 198
Нахождение НОК 7920 и 594
Наименьшее общее кратное (НОК) целых чисел 7920 и 594 — это наименьшее натуральное число, которое делится на 7920 и на 594 без остатка.
Как найти НОК 7920 и 594:
- разложить 7920 и 594 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 7920 и 594 на простые множители:
7920 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 11;
7920 | 2 |
3960 | 2 |
1980 | 2 |
990 | 2 |
495 | 3 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
594 = 2 · 3 · 3 · 3 · 11;
594 | 2 |
297 | 3 |
99 | 3 |
33 | 3 |
11 | 11 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.