Найти НОД и НОК чисел 792 и 1008

Дано: два числа 792 и 1008.

Найти: НОД и НОК этих чисел.

Нахождение НОД 792 и 1008

Наибольший общий делитель (НОД) целых чисел 792 и 1008 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 792 и 1008:

  1. разложить 792 и 1008 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 792 и 1008 на простые множители:

1008 = 2 · 2 · 2 · 2 · 3 · 3 · 7;

1008 2
504 2
252 2
126 2
63 3
21 3
7 7
1

792 = 2 · 2 · 2 · 3 · 3 · 11;

792 2
396 2
198 2
99 3
33 3
11 11
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 3, 3

3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 3 · 3 = 72

Ответ: НОД (792; 1008) = 2 · 2 · 2 · 3 · 3 = 72.

Нахождение НОК 792 и 1008

Наименьшее общее кратное (НОК) целых чисел 792 и 1008 — это наименьшее натуральное число, которое делится на 792 и на 1008 без остатка.

Как найти НОК 792 и 1008:

  1. разложить 792 и 1008 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 792 и 1008 на простые множители:

792 = 2 · 2 · 2 · 3 · 3 · 11;

792 2
396 2
198 2
99 3
33 3
11 11
1

1008 = 2 · 2 · 2 · 2 · 3 · 3 · 7;

1008 2
504 2
252 2
126 2
63 3
21 3
7 7
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (792; 1008) = 2 · 2 · 2 · 2 · 3 · 3 · 7 · 11 = 11088

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии