Дано: два числа 77 и 65.
Найти: НОД и НОК этих чисел.
Нахождение НОД 77 и 65
Наибольший общий делитель (НОД) целых чисел 77 и 65 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 77 и 65:
- разложить 77 и 65 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 77 и 65 на простые множители:
77 = 7 · 11;
77 | 7 |
11 | 11 |
1 |
65 = 5 · 13;
65 | 5 |
13 | 13 |
1 |
Частный случай, т.к. 77 и 65 — взаимно простые числа
Нахождение НОК 77 и 65
Наименьшее общее кратное (НОК) целых чисел 77 и 65 — это наименьшее натуральное число, которое делится на 77 и на 65 без остатка.
Как найти НОК 77 и 65:
- разложить 77 и 65 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 77 и 65 на простые множители:
77 = 7 · 11;
77 | 7 |
11 | 11 |
1 |
65 = 5 · 13;
65 | 5 |
13 | 13 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (77; 65) = 7 · 11 · 5 · 13 = 5005