Найти НОД и НОК чисел 756 и 3276

Дано: два числа 756 и 3276.

Найти: НОД и НОК этих чисел.

Нахождение НОД 756 и 3276

Наибольший общий делитель (НОД) целых чисел 756 и 3276 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 756 и 3276:

  1. разложить 756 и 3276 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 756 и 3276 на простые множители:

3276 = 2 · 2 · 3 · 3 · 7 · 13;

3276 2
1638 2
819 3
273 3
91 7
13 13
1

756 = 2 · 2 · 3 · 3 · 3 · 7;

756 2
378 2
189 3
63 3
21 3
7 7
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 3, 3, 7

3. Перемножаем эти множители и получаем: 2 · 2 · 3 · 3 · 7 = 252

Ответ: НОД (756; 3276) = 2 · 2 · 3 · 3 · 7 = 252.

Нахождение НОК 756 и 3276

Наименьшее общее кратное (НОК) целых чисел 756 и 3276 — это наименьшее натуральное число, которое делится на 756 и на 3276 без остатка.

Как найти НОК 756 и 3276:

  1. разложить 756 и 3276 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 756 и 3276 на простые множители:

756 = 2 · 2 · 3 · 3 · 3 · 7;

756 2
378 2
189 3
63 3
21 3
7 7
1

3276 = 2 · 2 · 3 · 3 · 7 · 13;

3276 2
1638 2
819 3
273 3
91 7
13 13
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (756; 3276) = 2 · 2 · 3 · 3 · 3 · 7 · 13 = 9828

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии