Найти НОД и НОК чисел 756 и 1386

Дано: два числа 756 и 1386.

Найти: НОД и НОК этих чисел.

Нахождение НОД 756 и 1386

Наибольший общий делитель (НОД) целых чисел 756 и 1386 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 756 и 1386:

  1. разложить 756 и 1386 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 756 и 1386 на простые множители:

1386 = 2 · 3 · 3 · 7 · 11;

1386 2
693 3
231 3
77 7
11 11
1

756 = 2 · 2 · 3 · 3 · 3 · 7;

756 2
378 2
189 3
63 3
21 3
7 7
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 3, 7

3. Перемножаем эти множители и получаем: 2 · 3 · 3 · 7 = 126

Ответ: НОД (756; 1386) = 2 · 3 · 3 · 7 = 126.

Нахождение НОК 756 и 1386

Наименьшее общее кратное (НОК) целых чисел 756 и 1386 — это наименьшее натуральное число, которое делится на 756 и на 1386 без остатка.

Как найти НОК 756 и 1386:

  1. разложить 756 и 1386 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 756 и 1386 на простые множители:

756 = 2 · 2 · 3 · 3 · 3 · 7;

756 2
378 2
189 3
63 3
21 3
7 7
1

1386 = 2 · 3 · 3 · 7 · 11;

1386 2
693 3
231 3
77 7
11 11
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (756; 1386) = 2 · 2 · 3 · 3 · 3 · 7 · 11 = 8316

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии