Найти: НОД и НОК этих чисел.
Нахождение НОД 75 и 567
Наибольший общий делитель (НОД) целых чисел 75 и 567 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 75 и 567:
- разложить 75 и 567 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 75 и 567 на простые множители:
567 = 3 · 3 · 3 · 3 · 7;
567 | 3 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
75 = 3 · 5 · 5;
75 | 3 |
25 | 5 |
5 | 5 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3
3. Перемножаем эти множители и получаем: 3 = 3
Нахождение НОК 75 и 567
Наименьшее общее кратное (НОК) целых чисел 75 и 567 — это наименьшее натуральное число, которое делится на 75 и на 567 без остатка.
Как найти НОК 75 и 567:
- разложить 75 и 567 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 75 и 567 на простые множители:
75 = 3 · 5 · 5;
75 | 3 |
25 | 5 |
5 | 5 |
1 |
567 = 3 · 3 · 3 · 3 · 7;
567 | 3 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.