Найти НОД и НОК чисел 742 и 665

Дано: два числа 742 и 665.

Найти: НОД и НОК этих чисел.

Нахождение НОД 742 и 665

Наибольший общий делитель (НОД) целых чисел 742 и 665 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 742 и 665:

  1. разложить 742 и 665 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 742 и 665 на простые множители:

742 = 2 · 7 · 53;

742 2
371 7
53 53
1

665 = 5 · 7 · 19;

665 5
133 7
19 19
1

2. Выбираем одинаковые множители. В нашем случае это: 7

3. Перемножаем эти множители и получаем: 7 = 7

Ответ: НОД (742; 665) = 7 = 7.

Нахождение НОК 742 и 665

Наименьшее общее кратное (НОК) целых чисел 742 и 665 — это наименьшее натуральное число, которое делится на 742 и на 665 без остатка.

Как найти НОК 742 и 665:

  1. разложить 742 и 665 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 742 и 665 на простые множители:

742 = 2 · 7 · 53;

742 2
371 7
53 53
1

665 = 5 · 7 · 19;

665 5
133 7
19 19
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (742; 665) = 2 · 7 · 53 · 5 · 19 = 70490

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии