Найти: НОД и НОК этих чисел.
Нахождение НОД 7392 и 14584
Наибольший общий делитель (НОД) целых чисел 7392 и 14584 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 7392 и 14584:
- разложить 7392 и 14584 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 7392 и 14584 на простые множители:
14584 = 2 · 2 · 2 · 1823;
14584 | 2 |
7292 | 2 |
3646 | 2 |
1823 | 1823 |
1 |
7392 = 2 · 2 · 2 · 2 · 2 · 3 · 7 · 11;
7392 | 2 |
3696 | 2 |
1848 | 2 |
924 | 2 |
462 | 2 |
231 | 3 |
77 | 7 |
11 | 11 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 · 2 = 8
Нахождение НОК 7392 и 14584
Наименьшее общее кратное (НОК) целых чисел 7392 и 14584 — это наименьшее натуральное число, которое делится на 7392 и на 14584 без остатка.
Как найти НОК 7392 и 14584:
- разложить 7392 и 14584 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 7392 и 14584 на простые множители:
7392 = 2 · 2 · 2 · 2 · 2 · 3 · 7 · 11;
7392 | 2 |
3696 | 2 |
1848 | 2 |
924 | 2 |
462 | 2 |
231 | 3 |
77 | 7 |
11 | 11 |
1 |
14584 = 2 · 2 · 2 · 1823;
14584 | 2 |
7292 | 2 |
3646 | 2 |
1823 | 1823 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.