Найти НОД и НОК чисел 73 и 210

Дано: два числа 73 и 210.

Найти: НОД и НОК этих чисел.

Нахождение НОД 73 и 210

Наибольший общий делитель (НОД) целых чисел 73 и 210 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 73 и 210:

  1. разложить 73 и 210 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 73 и 210 на простые множители:

210 = 2 · 3 · 5 · 7;

210 2
105 3
35 5
7 7
1

73 = 73;

73 73
1

Частный случай, т.к. 73 и 210 — взаимно простые числа, т.е. числа которые имеют только один общий делитель — единицу.

Нахождение НОК 73 и 210

Наименьшее общее кратное (НОК) целых чисел 73 и 210 — это наименьшее натуральное число, которое делится на 73 и на 210 без остатка.

Как найти НОК 73 и 210:

  1. разложить 73 и 210 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 73 и 210 на простые множители:

73 = 73;

73 73
1

210 = 2 · 3 · 5 · 7;

210 2
105 3
35 5
7 7
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (73; 210) = 2 · 3 · 5 · 7 · 73 = 15330

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии