Дано: два числа 73 и 101.
Найти: НОД и НОК этих чисел.
Нахождение НОД 73 и 101
Наибольший общий делитель (НОД) целых чисел 73 и 101 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 73 и 101:
- разложить 73 и 101 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 73 и 101 на простые множители:
101 = 101;
101 | 101 |
1 |
73 = 73;
73 | 73 |
1 |
Частный случай, т.к. 73 и 101 — взаимно простые числа
Нахождение НОК 73 и 101
Наименьшее общее кратное (НОК) целых чисел 73 и 101 — это наименьшее натуральное число, которое делится на 73 и на 101 без остатка.
Как найти НОК 73 и 101:
- разложить 73 и 101 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 73 и 101 на простые множители:
73 = 73;
73 | 73 |
1 |
101 = 101;
101 | 101 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (73; 101) = 73 · 101 = 7373