Найти: НОД и НОК этих чисел.
Нахождение НОД 71 и 315
Наибольший общий делитель (НОД) целых чисел 71 и 315 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 71 и 315:
- разложить 71 и 315 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 71 и 315 на простые множители:
315 = 3 · 3 · 5 · 7;
315 | 3 |
105 | 3 |
35 | 5 |
7 | 7 |
1 |
71 = 71;
71 | 71 |
1 |
Частный случай, т.к. 71 и 315 — взаимно простые числа
Нахождение НОК 71 и 315
Наименьшее общее кратное (НОК) целых чисел 71 и 315 — это наименьшее натуральное число, которое делится на 71 и на 315 без остатка.
Как найти НОК 71 и 315:
- разложить 71 и 315 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 71 и 315 на простые множители:
71 = 71;
71 | 71 |
1 |
315 = 3 · 3 · 5 · 7;
315 | 3 |
105 | 3 |
35 | 5 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.