Найти НОД и НОК чисел 700089 и 78884

Дано: два числа 700089 и 78884.

Найти: НОД и НОК этих чисел.

Нахождение НОД 700089 и 78884

Наибольший общий делитель (НОД) целых чисел 700089 и 78884 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 700089 и 78884:

  1. разложить 700089 и 78884 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 700089 и 78884 на простые множители:

700089 = 3 · 13 · 29 · 619;

700089 3
233363 13
17951 29
619 619
1

78884 = 2 · 2 · 13 · 37 · 41;

78884 2
39442 2
19721 13
1517 37
41 41
1

2. Выбираем одинаковые множители. В нашем случае это: 13

3. Перемножаем эти множители и получаем: 13 = 13

Ответ: НОД (700089; 78884) = 13 = 13.

Нахождение НОК 700089 и 78884

Наименьшее общее кратное (НОК) целых чисел 700089 и 78884 — это наименьшее натуральное число, которое делится на 700089 и на 78884 без остатка.

Как найти НОК 700089 и 78884:

  1. разложить 700089 и 78884 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 700089 и 78884 на простые множители:

700089 = 3 · 13 · 29 · 619;

700089 3
233363 13
17951 29
619 619
1

78884 = 2 · 2 · 13 · 37 · 41;

78884 2
39442 2
19721 13
1517 37
41 41
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (700089; 78884) = 2 · 2 · 13 · 37 · 41 · 3 · 29 · 619 = 4248140052

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии