Дано: два числа 7 и 96.
Найти: НОД и НОК этих чисел.
Нахождение НОД 7 и 96
Наибольший общий делитель (НОД) целых чисел 7 и 96 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 7 и 96:
- разложить 7 и 96 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 7 и 96 на простые множители:
96 = 2 · 2 · 2 · 2 · 2 · 3;
96 | 2 |
48 | 2 |
24 | 2 |
12 | 2 |
6 | 2 |
3 | 3 |
1 |
7 = 7;
7 | 7 |
1 |
Частный случай, т.к. 7 и 96 — взаимно простые числа
Нахождение НОК 7 и 96
Наименьшее общее кратное (НОК) целых чисел 7 и 96 — это наименьшее натуральное число, которое делится на 7 и на 96 без остатка.
Как найти НОК 7 и 96:
- разложить 7 и 96 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 7 и 96 на простые множители:
7 = 7;
7 | 7 |
1 |
96 = 2 · 2 · 2 · 2 · 2 · 3;
96 | 2 |
48 | 2 |
24 | 2 |
12 | 2 |
6 | 2 |
3 | 3 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (7; 96) = 2 · 2 · 2 · 2 · 2 · 3 · 7 = 672