Найти НОД и НОК чисел 7 и 45

Дано: два числа 7 и 45.

Найти: НОД и НОК этих чисел.

Нахождение НОД 7 и 45

Наибольший общий делитель (НОД) целых чисел 7 и 45 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 7 и 45:

  1. разложить 7 и 45 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 7 и 45 на простые множители:

45 = 3 · 3 · 5;

45 3
15 3
5 5
1

7 = 7;

7 7
1

Частный случай, т.к. 7 и 45 — взаимно простые числа, т.е. числа которые имеют только один общий делитель — единицу.

Нахождение НОК 7 и 45

Наименьшее общее кратное (НОК) целых чисел 7 и 45 — это наименьшее натуральное число, которое делится на 7 и на 45 без остатка.

Как найти НОК 7 и 45:

  1. разложить 7 и 45 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 7 и 45 на простые множители:

7 = 7;

7 7
1

45 = 3 · 3 · 5;

45 3
15 3
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (7; 45) = 3 · 3 · 5 · 7 = 315

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии