Найти: НОД и НОК этих чисел.
Нахождение НОД 676 и 208
Наибольший общий делитель (НОД) целых чисел 676 и 208 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 676 и 208:
- разложить 676 и 208 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 676 и 208 на простые множители:
676 = 2 · 2 · 13 · 13;
676 | 2 |
338 | 2 |
169 | 13 |
13 | 13 |
1 |
208 = 2 · 2 · 2 · 2 · 13;
208 | 2 |
104 | 2 |
52 | 2 |
26 | 2 |
13 | 13 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 13
3. Перемножаем эти множители и получаем: 2 · 2 · 13 = 52
Нахождение НОК 676 и 208
Наименьшее общее кратное (НОК) целых чисел 676 и 208 — это наименьшее натуральное число, которое делится на 676 и на 208 без остатка.
Как найти НОК 676 и 208:
- разложить 676 и 208 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 676 и 208 на простые множители:
676 = 2 · 2 · 13 · 13;
676 | 2 |
338 | 2 |
169 | 13 |
13 | 13 |
1 |
208 = 2 · 2 · 2 · 2 · 13;
208 | 2 |
104 | 2 |
52 | 2 |
26 | 2 |
13 | 13 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.