Найти: НОД и НОК этих чисел.
Нахождение НОД 670 и 705
Наибольший общий делитель (НОД) целых чисел 670 и 705 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 670 и 705:
- разложить 670 и 705 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 670 и 705 на простые множители:
705 = 3 · 5 · 47;
705 | 3 |
235 | 5 |
47 | 47 |
1 |
670 = 2 · 5 · 67;
670 | 2 |
335 | 5 |
67 | 67 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5
3. Перемножаем эти множители и получаем: 5 = 5
Нахождение НОК 670 и 705
Наименьшее общее кратное (НОК) целых чисел 670 и 705 — это наименьшее натуральное число, которое делится на 670 и на 705 без остатка.
Как найти НОК 670 и 705:
- разложить 670 и 705 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 670 и 705 на простые множители:
670 = 2 · 5 · 67;
670 | 2 |
335 | 5 |
67 | 67 |
1 |
705 = 3 · 5 · 47;
705 | 3 |
235 | 5 |
47 | 47 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.