Найти: НОД и НОК этих чисел.
Нахождение НОД 660 и 495
Наибольший общий делитель (НОД) целых чисел 660 и 495 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 660 и 495:
- разложить 660 и 495 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 660 и 495 на простые множители:
660 = 2 · 2 · 3 · 5 · 11;
660 | 2 |
330 | 2 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
495 = 3 · 3 · 5 · 11;
495 | 3 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3, 5, 11
3. Перемножаем эти множители и получаем: 3 · 5 · 11 = 165
Нахождение НОК 660 и 495
Наименьшее общее кратное (НОК) целых чисел 660 и 495 — это наименьшее натуральное число, которое делится на 660 и на 495 без остатка.
Как найти НОК 660 и 495:
- разложить 660 и 495 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 660 и 495 на простые множители:
660 = 2 · 2 · 3 · 5 · 11;
660 | 2 |
330 | 2 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
495 = 3 · 3 · 5 · 11;
495 | 3 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.