Найти НОД и НОК чисел 6552 и 4125

Дано: два числа 6552 и 4125.

Найти: НОД и НОК этих чисел.

Нахождение НОД 6552 и 4125

Наибольший общий делитель (НОД) целых чисел 6552 и 4125 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 6552 и 4125:

  1. разложить 6552 и 4125 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 6552 и 4125 на простые множители:

6552 = 2 · 2 · 2 · 3 · 3 · 7 · 13;

6552 2
3276 2
1638 2
819 3
273 3
91 7
13 13
1

4125 = 3 · 5 · 5 · 5 · 11;

4125 3
1375 5
275 5
55 5
11 11
1

2. Выбираем одинаковые множители. В нашем случае это: 3

3. Перемножаем эти множители и получаем: 3 = 3

Ответ: НОД (6552; 4125) = 3 = 3.

Нахождение НОК 6552 и 4125

Наименьшее общее кратное (НОК) целых чисел 6552 и 4125 — это наименьшее натуральное число, которое делится на 6552 и на 4125 без остатка.

Как найти НОК 6552 и 4125:

  1. разложить 6552 и 4125 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 6552 и 4125 на простые множители:

6552 = 2 · 2 · 2 · 3 · 3 · 7 · 13;

6552 2
3276 2
1638 2
819 3
273 3
91 7
13 13
1

4125 = 3 · 5 · 5 · 5 · 11;

4125 3
1375 5
275 5
55 5
11 11
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (6552; 4125) = 2 · 2 · 2 · 3 · 3 · 7 · 13 · 5 · 5 · 5 · 11 = 9009000

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии