Найти НОД и НОК чисел 650 и 100

Дано: два числа 650 и 100.

Найти: НОД и НОК этих чисел.

Нахождение НОД 650 и 100

Наибольший общий делитель (НОД) целых чисел 650 и 100 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 650 и 100:

  1. разложить 650 и 100 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 650 и 100 на простые множители:

650 = 2 · 5 · 5 · 13;

650 2
325 5
65 5
13 13
1

100 = 2 · 2 · 5 · 5;

100 2
50 2
25 5
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 5, 5

3. Перемножаем эти множители и получаем: 2 · 5 · 5 = 50

Ответ: НОД (650; 100) = 2 · 5 · 5 = 50.

Нахождение НОК 650 и 100

Наименьшее общее кратное (НОК) целых чисел 650 и 100 — это наименьшее натуральное число, которое делится на 650 и на 100 без остатка.

Как найти НОК 650 и 100:

  1. разложить 650 и 100 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 650 и 100 на простые множители:

650 = 2 · 5 · 5 · 13;

650 2
325 5
65 5
13 13
1

100 = 2 · 2 · 5 · 5;

100 2
50 2
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (650; 100) = 2 · 5 · 5 · 13 · 2 = 1300

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии