Найти НОД и НОК чисел 60 и 366

Дано: два числа 60 и 366.

Найти: НОД и НОК этих чисел.

Нахождение НОД 60 и 366

Наибольший общий делитель (НОД) целых чисел 60 и 366 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 60 и 366:

  1. разложить 60 и 366 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 60 и 366 на простые множители:

366 = 2 · 3 · 61;

366 2
183 3
61 61
1

60 = 2 · 2 · 3 · 5;

60 2
30 2
15 3
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 3

3. Перемножаем эти множители и получаем: 2 · 3 = 6

Ответ: НОД (60; 366) = 2 · 3 = 6.

Нахождение НОК 60 и 366

Наименьшее общее кратное (НОК) целых чисел 60 и 366 — это наименьшее натуральное число, которое делится на 60 и на 366 без остатка.

Как найти НОК 60 и 366:

  1. разложить 60 и 366 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 60 и 366 на простые множители:

60 = 2 · 2 · 3 · 5;

60 2
30 2
15 3
5 5
1

366 = 2 · 3 · 61;

366 2
183 3
61 61
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (60; 366) = 2 · 2 · 3 · 5 · 61 = 3660

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии