Найти НОД и НОК чисел 576 и 20

Дано: два числа 576 и 20.

Найти: НОД и НОК этих чисел.

Нахождение НОД 576 и 20

Наибольший общий делитель (НОД) целых чисел 576 и 20 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 576 и 20:

  1. разложить 576 и 20 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 576 и 20 на простые множители:

576 = 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3;

576 2
288 2
144 2
72 2
36 2
18 2
9 3
3 3
1

20 = 2 · 2 · 5;

20 2
10 2
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (576; 20) = 2 · 2 = 4.

Нахождение НОК 576 и 20

Наименьшее общее кратное (НОК) целых чисел 576 и 20 — это наименьшее натуральное число, которое делится на 576 и на 20 без остатка.

Как найти НОК 576 и 20:

  1. разложить 576 и 20 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 576 и 20 на простые множители:

576 = 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3;

576 2
288 2
144 2
72 2
36 2
18 2
9 3
3 3
1

20 = 2 · 2 · 5;

20 2
10 2
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (576; 20) = 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 · 5 = 2880

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии