Найти: НОД и НОК этих чисел.
Нахождение НОД 544 и 720
Наибольший общий делитель (НОД) целых чисел 544 и 720 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 544 и 720:
- разложить 544 и 720 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 544 и 720 на простые множители:
720 = 2 · 2 · 2 · 2 · 3 · 3 · 5;
720 | 2 |
360 | 2 |
180 | 2 |
90 | 2 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
544 = 2 · 2 · 2 · 2 · 2 · 17;
544 | 2 |
272 | 2 |
136 | 2 |
68 | 2 |
34 | 2 |
17 | 17 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 = 16
Нахождение НОК 544 и 720
Наименьшее общее кратное (НОК) целых чисел 544 и 720 — это наименьшее натуральное число, которое делится на 544 и на 720 без остатка.
Как найти НОК 544 и 720:
- разложить 544 и 720 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 544 и 720 на простые множители:
544 = 2 · 2 · 2 · 2 · 2 · 17;
544 | 2 |
272 | 2 |
136 | 2 |
68 | 2 |
34 | 2 |
17 | 17 |
1 |
720 = 2 · 2 · 2 · 2 · 3 · 3 · 5;
720 | 2 |
360 | 2 |
180 | 2 |
90 | 2 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.