Найти: НОД и НОК этих чисел.
Нахождение НОД 5436 и 4568
Наибольший общий делитель (НОД) целых чисел 5436 и 4568 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 5436 и 4568:
- разложить 5436 и 4568 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 5436 и 4568 на простые множители:
5436 = 2 · 2 · 3 · 3 · 151;
5436 | 2 |
2718 | 2 |
1359 | 3 |
453 | 3 |
151 | 151 |
1 |
4568 = 2 · 2 · 2 · 571;
4568 | 2 |
2284 | 2 |
1142 | 2 |
571 | 571 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 = 4
Нахождение НОК 5436 и 4568
Наименьшее общее кратное (НОК) целых чисел 5436 и 4568 — это наименьшее натуральное число, которое делится на 5436 и на 4568 без остатка.
Как найти НОК 5436 и 4568:
- разложить 5436 и 4568 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 5436 и 4568 на простые множители:
5436 = 2 · 2 · 3 · 3 · 151;
5436 | 2 |
2718 | 2 |
1359 | 3 |
453 | 3 |
151 | 151 |
1 |
4568 = 2 · 2 · 2 · 571;
4568 | 2 |
2284 | 2 |
1142 | 2 |
571 | 571 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.