Найти: НОД и НОК этих чисел.
Нахождение НОД 504 и 756
Наибольший общий делитель (НОД) целых чисел 504 и 756 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 504 и 756:
- разложить 504 и 756 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 504 и 756 на простые множители:
756 = 2 · 2 · 3 · 3 · 3 · 7;
| 756 | 2 |
| 378 | 2 |
| 189 | 3 |
| 63 | 3 |
| 21 | 3 |
| 7 | 7 |
| 1 |
504 = 2 · 2 · 2 · 3 · 3 · 7;
| 504 | 2 |
| 252 | 2 |
| 126 | 2 |
| 63 | 3 |
| 21 | 3 |
| 7 | 7 |
| 1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 3, 3, 7
3. Перемножаем эти множители и получаем: 2 · 2 · 3 · 3 · 7 = 252
Нахождение НОК 504 и 756
Наименьшее общее кратное (НОК) целых чисел 504 и 756 — это наименьшее натуральное число, которое делится на 504 и на 756 без остатка.
Как найти НОК 504 и 756:
- разложить 504 и 756 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 504 и 756 на простые множители:
504 = 2 · 2 · 2 · 3 · 3 · 7;
| 504 | 2 |
| 252 | 2 |
| 126 | 2 |
| 63 | 3 |
| 21 | 3 |
| 7 | 7 |
| 1 |
756 = 2 · 2 · 3 · 3 · 3 · 7;
| 756 | 2 |
| 378 | 2 |
| 189 | 3 |
| 63 | 3 |
| 21 | 3 |
| 7 | 7 |
| 1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
