Найти: НОД и НОК этих чисел.
Нахождение НОД 4896 и 8640
Наибольший общий делитель (НОД) целых чисел 4896 и 8640 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 4896 и 8640:
- разложить 4896 и 8640 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 4896 и 8640 на простые множители:
8640 = 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3 · 5;
8640 | 2 |
4320 | 2 |
2160 | 2 |
1080 | 2 |
540 | 2 |
270 | 2 |
135 | 3 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
4896 = 2 · 2 · 2 · 2 · 2 · 3 · 3 · 17;
4896 | 2 |
2448 | 2 |
1224 | 2 |
612 | 2 |
306 | 2 |
153 | 3 |
51 | 3 |
17 | 17 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2, 2, 3, 3
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 · 2 · 3 · 3 = 288
Нахождение НОК 4896 и 8640
Наименьшее общее кратное (НОК) целых чисел 4896 и 8640 — это наименьшее натуральное число, которое делится на 4896 и на 8640 без остатка.
Как найти НОК 4896 и 8640:
- разложить 4896 и 8640 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 4896 и 8640 на простые множители:
4896 = 2 · 2 · 2 · 2 · 2 · 3 · 3 · 17;
4896 | 2 |
2448 | 2 |
1224 | 2 |
612 | 2 |
306 | 2 |
153 | 3 |
51 | 3 |
17 | 17 |
1 |
8640 = 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3 · 5;
8640 | 2 |
4320 | 2 |
2160 | 2 |
1080 | 2 |
540 | 2 |
270 | 2 |
135 | 3 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.