Найти НОД и НОК чисел 4640 и 7360

Дано: два числа 4640 и 7360.

Найти: НОД и НОК этих чисел.

Нахождение НОД 4640 и 7360

Наибольший общий делитель (НОД) целых чисел 4640 и 7360 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 4640 и 7360:

  1. разложить 4640 и 7360 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 4640 и 7360 на простые множители:

7360 = 2 · 2 · 2 · 2 · 2 · 2 · 5 · 23;

7360 2
3680 2
1840 2
920 2
460 2
230 2
115 5
23 23
1

4640 = 2 · 2 · 2 · 2 · 2 · 5 · 29;

4640 2
2320 2
1160 2
580 2
290 2
145 5
29 29
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2, 2, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 · 2 · 5 = 160

Ответ: НОД (4640; 7360) = 2 · 2 · 2 · 2 · 2 · 5 = 160.

Нахождение НОК 4640 и 7360

Наименьшее общее кратное (НОК) целых чисел 4640 и 7360 — это наименьшее натуральное число, которое делится на 4640 и на 7360 без остатка.

Как найти НОК 4640 и 7360:

  1. разложить 4640 и 7360 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 4640 и 7360 на простые множители:

4640 = 2 · 2 · 2 · 2 · 2 · 5 · 29;

4640 2
2320 2
1160 2
580 2
290 2
145 5
29 29
1

7360 = 2 · 2 · 2 · 2 · 2 · 2 · 5 · 23;

7360 2
3680 2
1840 2
920 2
460 2
230 2
115 5
23 23
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (4640; 7360) = 2 · 2 · 2 · 2 · 2 · 2 · 5 · 23 · 29 = 213440

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии