Найти: НОД и НОК этих чисел.
Нахождение НОД 4604 и 3024
Наибольший общий делитель (НОД) целых чисел 4604 и 3024 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 4604 и 3024:
- разложить 4604 и 3024 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 4604 и 3024 на простые множители:
4604 = 2 · 2 · 1151;
4604 | 2 |
2302 | 2 |
1151 | 1151 |
1 |
3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7;
3024 | 2 |
1512 | 2 |
756 | 2 |
378 | 2 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 = 4
Нахождение НОК 4604 и 3024
Наименьшее общее кратное (НОК) целых чисел 4604 и 3024 — это наименьшее натуральное число, которое делится на 4604 и на 3024 без остатка.
Как найти НОК 4604 и 3024:
- разложить 4604 и 3024 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 4604 и 3024 на простые множители:
4604 = 2 · 2 · 1151;
4604 | 2 |
2302 | 2 |
1151 | 1151 |
1 |
3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7;
3024 | 2 |
1512 | 2 |
756 | 2 |
378 | 2 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.