Найти: НОД и НОК этих чисел.
Нахождение НОД 4320 и 2959
Наибольший общий делитель (НОД) целых чисел 4320 и 2959 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 4320 и 2959:
- разложить 4320 и 2959 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 4320 и 2959 на простые множители:
4320 = 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3 · 5;
4320 | 2 |
2160 | 2 |
1080 | 2 |
540 | 2 |
270 | 2 |
135 | 3 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
2959 = 11 · 269;
2959 | 11 |
269 | 269 |
1 |
Частный случай, т.к. 4320 и 2959 — взаимно простые числа, т.е. числа которые имеют только один общий делитель — единицу.
Нахождение НОК 4320 и 2959
Наименьшее общее кратное (НОК) целых чисел 4320 и 2959 — это наименьшее натуральное число, которое делится на 4320 и на 2959 без остатка.
Как найти НОК 4320 и 2959:
- разложить 4320 и 2959 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 4320 и 2959 на простые множители:
4320 = 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3 · 5;
4320 | 2 |
2160 | 2 |
1080 | 2 |
540 | 2 |
270 | 2 |
135 | 3 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
2959 = 11 · 269;
2959 | 11 |
269 | 269 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.