Найти: НОД и НОК этих чисел.
Нахождение НОД 4200 и 840
Наибольший общий делитель (НОД) целых чисел 4200 и 840 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 4200 и 840:
- разложить 4200 и 840 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 4200 и 840 на простые множители:
4200 = 2 · 2 · 2 · 3 · 5 · 5 · 7;
4200 | 2 |
2100 | 2 |
1050 | 2 |
525 | 3 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
840 = 2 · 2 · 2 · 3 · 5 · 7;
840 | 2 |
420 | 2 |
210 | 2 |
105 | 3 |
35 | 5 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 3, 5, 7
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 3 · 5 · 7 = 840
Нахождение НОК 4200 и 840
Наименьшее общее кратное (НОК) целых чисел 4200 и 840 — это наименьшее натуральное число, которое делится на 4200 и на 840 без остатка.
Как найти НОК 4200 и 840:
- разложить 4200 и 840 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 4200 и 840 на простые множители:
4200 = 2 · 2 · 2 · 3 · 5 · 5 · 7;
4200 | 2 |
2100 | 2 |
1050 | 2 |
525 | 3 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
840 = 2 · 2 · 2 · 3 · 5 · 7;
840 | 2 |
420 | 2 |
210 | 2 |
105 | 3 |
35 | 5 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.