Найти НОД и НОК чисел 4140 и 9315

Дано: два числа 4140 и 9315.

Найти: НОД и НОК этих чисел.

Нахождение НОД 4140 и 9315

Наибольший общий делитель (НОД) целых чисел 4140 и 9315 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 4140 и 9315:

  1. разложить 4140 и 9315 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 4140 и 9315 на простые множители:

9315 = 3 · 3 · 3 · 3 · 5 · 23;

9315 3
3105 3
1035 3
345 3
115 5
23 23
1

4140 = 2 · 2 · 3 · 3 · 5 · 23;

4140 2
2070 2
1035 3
345 3
115 5
23 23
1

2. Выбираем одинаковые множители. В нашем случае это: 3, 3, 5, 23

3. Перемножаем эти множители и получаем: 3 · 3 · 5 · 23 = 1035

Ответ: НОД (4140; 9315) = 3 · 3 · 5 · 23 = 1035.

Нахождение НОК 4140 и 9315

Наименьшее общее кратное (НОК) целых чисел 4140 и 9315 — это наименьшее натуральное число, которое делится на 4140 и на 9315 без остатка.

Как найти НОК 4140 и 9315:

  1. разложить 4140 и 9315 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 4140 и 9315 на простые множители:

4140 = 2 · 2 · 3 · 3 · 5 · 23;

4140 2
2070 2
1035 3
345 3
115 5
23 23
1

9315 = 3 · 3 · 3 · 3 · 5 · 23;

9315 3
3105 3
1035 3
345 3
115 5
23 23
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (4140; 9315) = 2 · 2 · 3 · 3 · 5 · 23 · 3 · 3 = 37260

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии